Офтальмол. журн. — 2021. — № 2. — С. 40-45.

УДК 617.7:576(048)

http://doi.org/10.31288/oftalmolzh202124045


Результаты и возможные перспективы применения генетических технологий в офтальмологии (литературный обзор). Часть 2. 

Н. А. Гаврилова, д-р мед. наук, профессор; О. Е. Тищенко, канд. мед. наук, доцент; А. В. Зиновьева, старший лаборант 

ФГБОУ ВО Московский государственный медико-стоматологический университет им. А. И. Евдокимова;  

Москва (Российская Федерация)

E-mail: aleksandra.r@live.ru

ЯК ЦИТУВАТИ: Гаврилова Н.А. Результаты и возможные перспективы применения генетических технологий в офтальмологии. Часть 2. / Н.А.Гаврилова, О.Е.Тищенко, А.В. Зиновьева // Офтальмол. журн. — 2021. — № 2. — С. 40-45.  http://doi.org/10.31288/oftalmolzh202124045


Появление принципиально новых технологических решений в области генной терапии на сегодняшний день и сформировавшийся приоритет развития генетических технологий создают серьезные предпосылки для начала новой Fusion эры в офтальмологии в ближайшее время. В данном обзоре, во второй его части, представлены результаты   фундаментальных и клинических исследований применения генетических терапевтических стратегий – замены гена, подавления экспрессии генов, геномного редактирования с помощью технологии CRISPR/Сas9, которые используются в офтальмологии в течение последних нескольких лет. 

Ключевые слова: вирусные векторы, генная терапия, сетчатка

Литература

1.Ali R.R., Sarra G.M., Stephens C. et al. Restoration of photoreceptor ultrastructure and function in retinal degeneration slow mice by gene therapy // Nat Genet. –2000. – Vol.25(3). – P.306-310. 

2.Vollrath D., Feng W., Duncan J.L. et al. Correction of the retinal dystrophy phenotype of the RCS rat by viral gene transfer of Mertk // Proc Natl Acad Sci U S A. – 2001. – Vol. 98(22). – 12584-12589. 

3.Smith A.J., Schlichtenbrede F.C., Tschernutter M. AAV–Mediated gene transfer slows photoreceptor loss in the RCS rat model of retinitis pigmentosa // Mol Ther. –2003. – Vol.8(2). – P.188-195. 

4.Tschernutter M., Schlichtenbrede F.C., Howe S. Long-term preservation of retinal function in the RCS rat model of retinitis pigmentosa following lentivirus-mediated gene therapy // Gene Ther. – 2005. – Vol. 12(8). Tschernutter M., Schlichtenbrede F.C., Howe S. Long-term preservation of retinal  P.12694–12701. 

5.Bennicelli J., Wright J.F., Komaromy A., Jacobs J.B., Hauck B. et al. Reversal of blindness in animal models of leber congenital amaurosis using optimized AAV2–mediated gene transfer // Mol Ther. – 2008. – Vol.16(3). – P.458-465. 

6.Allocca M., Doria M., Petrillo M. et al. Serotype–dependent packaging of large genes in adeno–associated viral vectors results in effective gene delivery in mice // J Clin Invest. – 2008. – Vol.118(5). – P.1955-1964. 

7.Drenser K.A., Timmers A.M., Hauswirth W.W., Lewin A.S. Ribozyme–targeted destruction of RNA associated with autosomal–dominant retinitis pigmentosa 5 // Invest Ophthalmol Vis Sci. – 1998. – Vol.39. – P.681–689.

8.Lewin A.S., Drenser K.A., Hauswirth W.W. et al. Ribozyme rescue of photoreceptor cells in a transgenic rat model of autosomal dominant retinitis pigmentosa 4 // Nat Med. – 1998. – №4. – P.967–971.

9.O'Neill B., Millington–Ward S., O'Reilly M. et al. Ribozyme–based therapeutic approaches for autosomal dominant retinitis pigmentosa // Invest Ophthalmol Vis Sci. – 2000. – Vol.41(10). – P.2863-2869.

10.Sullivan J.M., Pietras K.M., Shin B.J., Misasi J.N. Hammerhead ribozymes designed to cleave all human rod opsin mRNAs which cause autosomal dominant retinitis pigmentosa 1 // Mol Vis. – 2002. – Vol.8. – P.102–113.

11.Gorbatyuk M.S., Pang J.J, Thomas J. Jr., Hauswirth W.W., Lewin A.S. Knockdown of wild–type mouse rhodopsin using an AAV vectored ribozyme as part of an RNA replacement approach // MolVis. – 2005. – Vol.11. – P.648–656.

12.Gorbatyuk M., Justilien V., Liu J., Hauswirth W.W., Lewin A.S. Preservation of photoreceptor morphology and function in P23H rats using an allele independent ribozyme // Exp Eye Res. – 2007. – Vol.84(1). – P.44-52. 

13.Corydon T.J. Antiangiogenic Eye Gene Therapy // Human Gene Therapy. –2015. – Vol.26(8). – P.525–537. 

14.Garba A.O., Mousa S.A. Bevasiranib for the treatment of wet, age–related macular degeneration // Ophthalmol Eye Dis. – 2010. – Vol.2. – P.75–83. 

15.Guzman–Aranguez A., Loma P., Pintor J. Small–interfering RNAs (siRNAs) as a promising tool for ocular therapy // Br J Pharmacol. – 2013. – Vol.170(4). – P.730–747. 

16.Nguyen Q.D., Schachar R.A., Nduaka C.I. MONET Clinical Study Group. Evaluation of the siRNA PF–04523655 versus ranibizumab for the treatment of neovascular age–related macular degeneration (MONET Study) // Ophthalmology. – 2012. – Vol.119(9). – P.1867–1873. 

17.Chau V.Q., Hu J., Gong X., Hulleman J.D. Delivery of Antisense Oligonucleotides to the Cornea // Nucleic Acid Therapeutics. – 2020. – Vol.10. – 1089/nat.2019.0838. 

18.Cideciyan A.V., Jacobson S.G., Drack A.V. et al. Effect of an intravitreal antisense oligonucleotide on vision in Leber congenital amaurosis due to a photoreceptor cilium defect // Nat Med. – 2019. – Vol.25(2). – P.225–228. 

19.Collin R.W., Garanto A. Applications of antisense oligonucleotides for the treatment of inherited retinal diseases // Curr Opin Ophthalmol. – 2017. – Vol.28(3). – P.260–266. 

20.Gerard X., Garanto A., Rozet J.M., Collin R.W. Antisense Oligonucleotide Therapy for Inherited Retinal Dystrophies // Adv Exp Med Biol. – 2016. – Vol.854. – P.517-524. 

21.Hu J., Rong Z., Gong X. et al. Oligonucleotides targeting TCF4 triplet repeat expansion inhibit RNA foci and mis–splicing in Fuchs' dystrophy // Hum Mol Genet. – 2018. – Vol.27(6). – P.1015–1026. 

22.Hu J., Shen X., Rigo F., Prakash T.P. et al. Duplex RNAs and ss–siRNAs Block RNA Foci Associated with Fuchs' Endothelial Corneal Dystrophy // Nucleic Acid Ther. – 2019. – Vol.29(2). – P.73-81. 

23.Moore S.M., Skowronska–Krawczyk D., Chao D.L. Emerging Concepts for RNA Therapeutics for Inherited Retinal Disease // Adv Exp Med Biol. – 2019. – Vol.1185. – P.85-89. 

24.Rocha E.M., Nominato L.F., Reinach P.S. Re: Cursiefen et al. Aganirsen antisense oligonucleotide eye drops inhibit keratitis–induced corneal neovascularization and reduce need for transplantation: the I–CAN study // Ophthalmology. –2015. – Vol.122(5). – e28. 

25.Sangermano R., Garanto A., Khan M. et al. Deep-intronic ABCA4 variants explain missing heritability in Stargardt disease and allow correction of splice defects by antisense oligonucleotides // Genet Med. – 2019. – Vol.21(8). – P.1751–1760. 

26.Yang G., Fu Y., Zhang L., Lu X., Li Q. miR106b regulates retinoblastoma Y79 cells through Runx3 // Oncol Rep. – 2017. – Vol.38(5). – P.3039–3043. 

27.Zarouchlioti C., Sanchez–Pintado B., Hafford Tear N.J. et al. Antisense Therapy for a Common Corneal Dystrophy Ameliorates TCF4 Repeat Expansion-Mediated Toxicity // Am J Hum Genet. – 2018. – Vol.102(4). – P.528–539. 

28.Cursiefen C., Viaud E., Bock F. et al. Aganirsen antisense oligonucleotide eye drops inhibit keratitis–induced corneal neovascularization and reduce need for transplantation: the I-CAN study // Ophthalmology. – 2014. – Vol.121(9). – P.1683-1692. 

29.Lorenz K., Scheller Y., Bell K. et al. A prospective, randomised, placebo–controlled, double–masked, three–armed, multicentre phase II/III trial for the Study of a Topical Treatment of Ischaemic Central Retinal Vein Occlusion to Prevent Neovascular Glaucoma – the STRONG study: study protocol for a randomised contolled trial // Trials. – 2017. – Vol.18(1). – P.128. 

30.Pfeiffer N., Voykov B., Renieri G. et al. First–in–human phase I study of ISTH0036, an antisense oligonucleotide selectively targeting transforming growth factor beta 2 (TGF–β2), in subjects with open–angle glaucoma undergoing glaucoma filtration surgery // PLoS One. – 2017. – Vol.12(11). – e0188899. 

31.Naert T., Colpaert R., Van Nieuwenhuysen T. et al. CRISPR/Cas9 mediated knockout of rb1 and rbl1 leads to rapid and penetrant retinoblastoma development in Xenopus tropicalis // Sci Rep. – 2016. – Vol.6. – P.35264. 

32.Wu W.H., Tsai Y.T., Justus S., Lee T.T. et al. CRISPR Repair Reveals Causative Mutation in a Preclinical Model of Retinitis Pigmentosa // Mol Ther. –2016. – Vol.24(8). – P.1388–94. 

33.Bakondi B., Lv W., Lu B. et al. In Vivo CRISPR/Cas9 Gene Editing Corrects Retinal Dystrophy in the S334ter–3 Rat Model of Autosomal Dominant Retinitis Pigmentosa // Mol Ther. – 2016. – Vol.24(3). – P.556-563. 

34.Burnight E.R., Giacalone J.C., Cooke J.A. et al. CRISPR–Cas9 genome engineering: Treating inherited retinal degeneration // Prog Retin Eye Res. –2018. – Vol.65. – P.28-49. 

35.Huang K.C., Wang M.L., Chen S.J. et al. Morphological and Molecular Defects in Human Three–Dimensional Retinal Organoid Model of X–Linked Juvenile Retinoschisis // Stem Cell Reports. – 2019. – Vol.13(5). – P.906–923. 

36.Kim E.K., Kim S., Maeng Y.S. Generation of TGFBI knockout ABCG2+/ABCB5+ double–positive limbal epithelial stem cells by CRISPR/Cas9–mediated genome editing // PLoS One. – 2019. – Vol.14(2). – e0211864. 

37.Kim K., Park S.W., Kim J.H. et al. Genome surgery using Cas9 ribonucleoproteins for the treatment of age–related macular degeneration // Genome Res. –2017. – Vol.27(3). – P.419-426. 

38.Peddle C.F., MacLaren R.E. The Application of CRISPR/Cas9 for the Treatment of Retinal Diseases // Yale J Biol Med. – 2017. – Vol.90(4). – P.533-541. 

39.Ruan G.X., Barry E., Yu D. et al. CRISPR/Cas9–Mediated Genome Editing as a Therapeutic Approach for Leber Congenital Amaurosis 10 // Mol Ther. – 2017. – Vol.25(2). – P.331-341.

40.Suzuki K., Tsunekawa Y., Hernandez–Benitez R. et al. In vivo genome editing via CRISPR/Cas9 mediated homology–independent targeted integration // Nature. –2016. – Vol.540(7631). – P.144-149. 

41.Taketani Y., Kitamoto K., Sakisaka T. et al. Repair of the TGFBI gene in human corneal keratocytes derived from a granular corneal dystrophy patient via CRISPR/Cas9–induced homology–directed repair // Sci Rep. – 2017. – Vol.7(1), – P.16713. 

42.Xu C.L., Park K.S., Tsang S.H. CRISPR/Cas9 genome surgery for retinal diseases //  Drug Discov Today Technol. – 2018. – Vol.28. – P.23-32. 

43.Yu W., Mookherjee S., Chaitankar V. et al. Nrl knockdown by AAV–delivered CRISPR/Cas9 prevents retinal degeneration in mice // Nat Commun. – 2017. – Vol.8. – P.14716. 

44.Zhu J., Ming C., Fu X., Duan Y. et al. Gene and mutation independent therapy via CRISPR–Cas9 mediated cellular reprogramming in rod photoreceptors // Cell Res. – 2017. – Vol.27. – P.830–833.

45.Chung S.H., Mollhoff I.N., Nguyen U. et al. Factors Impacting Efficacy of AAV–Mediated CRISPR–Based Genome Editing for Treatment of Choroidal Neovascularization // Mol Ther Methods Clin Dev. – 2020. – Vol.17. – P.409-417. 

46.Huang X., Zhou G., Wu W. et al. Genome editing abrogates angiogenesis in vivo // Nat Commun. – 2017. – Vol.8(1). – P.112. 

47.Yiu G., Tieu E., Nguyen A.T., Wong B., Smit-McBride Z. Genomic Disruption of VEGF–A Expression in Human Retinal Pigment Epithelial Cells Using CRISPR–Cas9 Endonuclease // Invest Ophthalmol Vis Sci. – 2016. – Vol.57(13). – P.5490–5497. 

48.Lightfoot J.D., Fuller K.K. CRISPR/Cas9–Mediated Gene Replacement in the Fungal Keratitis Pathogen Fusarium solani var. petroliphilum // Microorganisms. –2019. – Vol.7(10). – P.457. 

49.Yang T.C., Chang C.Y., Yarmishyn A.A. et al. Carboxylated nanodiamond–mediated CRISPR–Cas9 delivery of human retinoschisis mutation into human iPSCs and mouse retina // Acta Biomater. – 2020. – Vol.101. – P.484–494. 

50.Li F., Hung S.S.C., Mohd Khalid M.K.N. et al. Utility of Self–Destructing CRISPR/Cas Constructs for Targeted Gene Editing in the Retina // Hum Gene Ther. – 2019. – Vol.30(11). – P.1349-1360. 

51.Schaefer K.A., Wu W.H., Colgan D.F. et al. Unexpected mutations after CRISPR–Cas9 editing in vivo // Nat Methods. – 2017. – Vol.14(6). – P.547-548. 

52.Anzalone A.V., Randolph P.B., Davis J.R. et al. Search–and–replace genome editing without double–strand breaks or donor DNA // Nature. – 2019. – Vol.576(7785). – P.149–157. 

53.Hernandez M., Recalde S., Garcia-Garcia L. et al. Preclinical Evaluation of a Cell–Based Gene Therapy Using the Sleeping Beauty Transposon System in Choroidal Neovascularization // Mol Ther Methods Clin Dev. – 2019, – Vol.15. – P.403–417.

Авторы заявляют об отсутствии конфликта интересов, которые могли бы повлиять на их мнение относительно предмета или материалов, описанных и обсуждаемых в данной рукописи. 

Поступила 10.07.20