J.ophthalmol.(Ukraine).2021;1:32-37.

http://doi.org/10.31288/oftalmolzh202113237

Received: 10 July 2020; Published on-line: 12 February 2021


OCTA-based retinal microvascular bed assessment at the zones ranging from the fovea to the periphery

N. S. Lutsenko1, T. S. Kyrylova1, O. A. Rudycheva1, O. A. Isakova1, T. V. Nedilka2

1 Zaporizhzhya Medical Academy of Postgraduate Education; Zaporizhzhia (Ukraine)

2 Zaporizhzhia Regional Clinical Hospital; Zaporizhzhia (Ukraine)

E-mail: tetianakyrylova@gmail.com

TO CITE THIS ARTICLE: Lutsenko NS, Kyrylova TS, Rudycheva OA, Isakova OA, Nedilka TV. OCTA-based retinal microvascular bed assessment at the zones ranging from the fovea to the periphery. J.ophthalmol.(Ukraine).2020;6:32-7.   http://doi.org/10.31288/oftalmolzh202113237 


Background: Studies (particularly, optical coherence tomography angiography (OCTA) studies) on the peripheral microvascular bed in health are important because many retinal disorders involve its injury.

Purpose: To improve the efficacy of diagnosing the changes in the retinal microvascular bed through its OCTA-based assessment at the zones ranging from the fovea to the periphery in normal eyes.

Material and Methods: Fourteen healthy individuals were included in the study. Three sequential 3 mm x 3 mm OCTA scans with displacement from the center of the fovea to the periphery for each of the three directions (superior, inferior and temporal directions) were registered.

Results: Superficial plexus vessel density and deep plexus vessel density were assessed at 1-9 mm from the center of the fovea.  We found that superficial plexus vessel density progressively increased (38-46%) with distance from the center of the fovea, whereas deep plexus vessel density moderately decreased (18-25%) with distance from the center. Superficial plexus vessel density was significantly increased in the superior and inferior directions at the zones with the presence of vascular arcades, and these arcades are absent in the temporal direction; this makes the temporal direction most reliable and promising for studies on microcirculation at the ocular periphery.

Conclusion: OCTA is an effective technique for assessing the retinal microvascular bed at the zones ranging from the fovea to the far periphery.

Keywords: optical coherence tomography angiography, retinal vessel density, deep capillary plexus, periphery

 

References

1.Tong S, Li H, Wang L, Tudi, M. Concentration, Spatial Distribution, Contamination Degree and Human Health Risk Assessment of Heavy Metals in Urban Soils across China between 2003 and 2019 - A Systematic Review. Int J Environ Res Public Health. 2020 Apr 29;17(9):3099. 

Crossref    PubMed

2.Tytła M. Assessment of Heavy Metal Pollution and Potential Ecological Risk in Sewage Sludge from Municipal Wastewater Treatment Plant Located in the Most Industrialized Region in Poland-Case Study. Int J Environ Res Public Health. 2019 Jul 9;16(13):2430. 

Crossref   PubMed  

3.Stetsenko DO, Dolin VV. [Heavy metals in soils of radiocontaminated forest environmental systems]. Poshukova ta ekologichna geokhimiia. 2009;9:42-7. Ukrainian. 

4.Biletska EM, Onul NM, Golovkova TA, et al. [Environment- and hygiene-based determinacy of deterioration of health for population of industrial region]. 2016;4:14-8. Ukrainian.

5.Rahman Z, Singh VP. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr(VI)), mercury (Hg), and lead (Pb)) on the total environment: an overview. Environ Monit Assess. 2019 Jun 8;191(7):419. 

Crossref   PubMed 

6.Junaid M, Hashmi MZ, Malik RN, et al. Toxicity and oxidative stress induced by chromium in workers exposed from different occupational settings around the globe: A review. Environ Sci Pollut Res Int. 2016 Oct;23(20):20151-20167. 

Crossref   PubMed 

7.World’s Worst Pollution Problems 2015. Available at:https://www.greencross.ch/wp-content/uploads/uploads/media/pollution_rep...

8.Vasyuta VA. [Medical and social substantiation of the system of medical care for patients with optic nerve atrophy]. [Extended Abstract of Dissertation for the Degree of Dr Sc (Med)]. Kyiv, 2015. Ukrainian.

9.Vennam S, Georgoulas S, Khawaja A, et al. Heavy metal toxicity and the aetiology of glaucoma. Eye (Lond). 2020 Jan; 34(1):129-37. 

Crossref   PubMed 

10.Lin S-C, Singh K, Lin SC. Association Between Body Levels of Trace Metals and Glaucoma Prevalence. JAMA Ophthalmol. 2015 Oct;133(10):1144-50. 

Crossref   PubMed  

11.Jung SJ, Lee SH. Association between Three Heavy Metals and Dry Eye Disease in Korean Adults: Results of the Korean National Health and Nutrition Examination Survey. Korean J Ophthalmol. 2019 Feb;33(1):26-35. 

Crossref   PubMed 

12.Wills NK,  Kalariya N,  Sadagopa Ramanujam VM, et al.. Human retinal cadmium accumulation as a factor in the etiology of age-related macular degeneration. Exp Eye Res. 2009; 89: 79-87. 

Crossref   PubMed  

13.Apel W, Stark D, Stark A, et al. Cobalt-chromium toxic retinopathy case study. J Doc Ophthalmol. 2013 Feb;126(1):69–78. 

Crossref   PubMed 

14.Ng SK, Ebneter A, Gilhotra JS. Hip-implant related chorio-retinal cobalt toxicity. Indian J Ophthalmol. Jan-Feb 2013;61(1):35-7. 

Crossref   PubMed 

15.Garcia MD, Hur M, Chen JJ, et al. Cobalt toxic optic neuropathy and retinopathy: Case report and review of the literature. Am J Ophthalmol Case Rep. 2020 Jan 25;17:100606. 

Crossref   PubMed  

16.Vashkulat NP. Establish levels of heavy metals in soils in Ukraine. Environ Health. 2002;2:44–6.

17.Enterosgel reference data: https://compendium.com.ua/info/45247/enterosgel_/?gclid=Cj0KCQiAhs79BRD0...

18.Rybolovlev IuR, Rybolovlev RS. [Dosing substances for mammals based on biological activity constants]. Doklady Akademii Nauk SSSR. 1979;247(6):1513-6. Russian.

19.Salama A, Hegazy R, Hassan A. Intranasal Chromium Induces Acute Brain and Lung Injuries in Rats: Assessment of Different Potential Hazardous Effects of Environmental and Occupational Exposure to Chromium and Introduction of a Novel Pharmacological and Toxicological Animal Model. PLoS One. 2016; 11(12): e0168688. 

Crossref   PubMed 

20.Duckett S. Abnormal deposits of chromium in the pathological human brain. J Neurol Neurosurg Psychiatry. 1986 Mar; 49(3): 296–301. 

Crossref  PubMed

21.Fang Z, Zhao M, Zhen H, et al. Genotoxicity of tri- and hexavalent chromium compounds in vivo and their modes of action on DNA damage in vitro. PLoS One. 2014 Aug 11;9(8):e103194. 

Crossref   PubMed 

22.Xiao F, Li Y, Dai L, et al. Hexavalent chromium targets mitochondrial respiratory chain complex I to induce reactive oxygen species-dependent caspase-3 activation in L-02 hepatocytes. Int J Mol Med. 2012 Sep;30(3):629-35. 

Crossref  

23.Sun H, Brocato J, Costa M. Oral Chromium Exposure and Toxicity. Curr Environ Health Rep. 2015 Sep;2(3):295-303. 

Crossref   PubMed 

24.Velichkovskiĭ BT. Vestn Ross Akad Med Nauk. 2001;(6):45-52. [Free radical oxidation as a link of early and prolonged adaptation to environmental factors]. Russian.

25.Kurutas EB. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J. 2016 Jul 25;15(1):71. 

Crossref   PubMed

26.Kotyzová D, Hodková A, Bludovská M, et al. Effect of chromium (VI) exposure on antioxidant defense status and trace element homeostasis in acute experiment in rat. Toxicol Ind Health. 2015 Nov;31(11):1044-50. 

Crossref   PubMed  

27.Patlolla AK, Barnes C, Yedjou C, et al. Oxidative stress, DNA damage, and antioxidant enzyme activity induced by hexavalent chromium in Sprague-Dawley rats. Environ Toxicol. 2009;24(1):66-73. 

Crossref   PubMed

28.Mary Momo CM,  Ferdinand N, Omer Bebe NK, et al. Oxidative Effects of Potassium Dichromate on Biochemical, Hematological Characteristics, and Hormonal Levels in Rabbit Doe (Oryctolagus cuniculus). Vet Sci. 2019 Mar;6(1):30. 

Crossref   PubMed  

29.Bucio L, García C, Souza V. Uptake, cellular distribution and DNA damage produced by mercuric chloride in a human fetal hepatic cell line. Mutat Res. 1999 Jan 25;423(1-2):65-72. 

Crossref 

30.Castellino N, Aloj S. Intracellular distribution of lead in the liver and kidney of the rat. Br J Ind Med. 1969 Apr;26(2):139-43. 

Crossref   PubMed

31.Hertz L, Dienel GA. Lactate transport and transporters: general principles and functional roles in brain cells. J Neurosci Res. 2005 Jan 1-15;79(1-2):11-8. 

Crossref   PubMed  

32.Maiuolo J, Macrì R, Bava I, et al. Myelin Disturbances Produced by Sub-Toxic Concentration of Heavy Metals: The Role of Oligodendrocyte Dysfunction. Int J Mol Sci. 2019 Sep 14;20(18):4554. 

Crossref    PubMed  

33.Chin-Chan M, Navarro-Yepes J, Quintanilla-Vega B. Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front Cell Neurosci. 2015 Apr 10;9:124. 

Crossref   PubMed  

34.Nikolaiev VG, Klishch IM, Zhulkevich IV. [Using Enterosgel for prevention of oxidative stress in acute blood loss]. Visnyk naukovykh doslidzhen. 2009;8:72-4. Ukrainian.

35.Howell CA, Mikhalovsky SV, Markaryan EN, et al. Investigation of the adsorption capacity of the enterosorbent Enterosgel for a range of bacterial toxins, bile acids and pharmaceutical drugs. Sci Rep. 2019;9:5629.

Crossref   PubMed

 

The authors declare no conflict of interest which could influence their opinions on the subject or the materials presented in the manuscript.