Targeted transscleral laser photocoagulation of the ciliary body in patients with neovascular glaucoma 

Zadorozhnyy O.,  Cand Sc (Med); Guzun, O.,  Cand Sc (Med); Kustryn, T.,  Cand Sc (Med);  Nasinnyk I., Cand Sc (Med); Chechin P., Cand Sc (Med); Korol A., Dr Sc (Med)

SI " The Filatov Institute of Eye Diseases and Tissue Therapy of the NAMS of Ukraine”; Odesa, Ukraine

E-mail: laserfilatova@gmail.com

TO CITE THIS ARTICLE: Zadorozhnyy O, Guzun O, Kustryn T, Nasinnyk I, Chechin P, Korol A. Targeted transscleral laser photocoagulation of the ciliary body in patients with neovascular glaucoma. J.ophthalmol.(Ukraine).2019;4:3-7. http://doi.org/10.31288/oftalmolzh2019437


Transscleral laser photocoagulation of the ciliary body is used to reduce intraocular pressure (IOP) in neovascular glaucoma, which is associated with a risk of complications.  

Purpose.  To study the efficacy and safety of transscleral laser cyclophotocoagulation in patients with neovascular glaucoma using infrared transillumination to visualize the structures of the ciliary body. 

Material and Methods. The study included 45 patients (45 eyes) with end- stage neovascular glaucoma. All patients underwent transpalpebral infrared transillumination of the ciliary body in order to accurately position a laser probe during transscleral contact-compression 1064-nm laser cyclophotocoagulation. The follow-up period after the initial treatment was 12 months with monthly control.  

Results.  After 12 months, the mean IOP decreased from 37.7±3.2 to 23.8±5.1 mm Hg (p=0.000). IOP normalization was achieved in 37 patients (82%). The mean number of treatment sessions was 1.8±0.6. During the 12 months follow-up there were no cases of hypotony and phthisis. 

Conclusion.  Infrared transillumination allows imaging of ciliary body structures for targeted positioning a laser probe during transscleral laser cyclophotocoagulation. Targeted transscleral laser 1064-nm cyclophotocoagulation is an effective and safe treatment for patients with neovascular glaucoma.

Key words: infrared transillumination, ciliary body, neovascular glaucoma, transscleral cyclocoagulation. 



1.Havens SJ, Gulati V. Neovascular Glaucoma. Dev. Ophthalmol. 2016;55:196-204.

Crossref    PubMed

2.Ohnishi Y, Ishibashi T, Sagawa T. Fluorescein gonioangiography in diabetic neovascularization. Graefes Arch. Clin. Exp. Ophthalmol. 1994;232:199–204.

Crossref   PubMed  

3.Nabili S, Kirkness CM. Trans-scleral diode laser cyclophoto-coagulation in the treatment of diabetic neovascular glaucoma. Eye. 2004;18(4):352–6.

Crossref   PubMed  

4.Oguri A, Takahashi E, Tomita G et al. Transscleral cyclophotocoagulation with the diode laser for neovascular glaucoma. A. Oguri. Ophthalmic Surg. Lasers. 1998;29 (9):722–7. 

5.Delgado MF, Dickens CJ, Iwach AG et al. Long-term results of noncontact neodymium:yttrium-aluminum-garnet cyclophotocoagulation in neovascular glaucoma. Ophthalmology. 2003;110 (5):895–99. 


6.Choy BNK, Lai JSM, Yeung JCC et al. Randomized comparative trial of diode laser transscleral cyclophotocoagulation versus Ahmed glaucoma valve for neovascular glaucoma in Chinese - a pilot study. Clin. Ophthalmol. 2018;12:2545-52.

Crossref   PubMed  

7.Ishida K. Update on results and complications of cyclophotocoagulation. Curr. Opin. Ophthalmol. 2013;24 (2):102-10.

Crossref    PubMed 

8.Rotchford AP, Jayasawal R, Madhusudhan S et al. Transscleral diode laser cycloablation in patients with good vision. Br. J. Ophthalmol. 2010;94 (9):1180-3.

Crossref    PubMed   

9.Vernon SA, Koppens JM, Meno GJ et al. Diode laser cycloablation in adult glaucoma: long-term results of a standard protocol and review of current literature. Exp. Ophthalmol. 2006;34:411–20.

Crossref   PubMed   

10.Schubert HD. Cyclophotocoagulation: how far posterior to the limbus is the ciliary body?  Ophthalmology. 1989;96 (1):139-40.


11.Chechin PP, Guzun OV, Khramenko NI, Peretyagin OA. Efficacy of transscleral Nd:YAG laser cyclophotocoagulation and changes in blood circulation in the eye of patients with absolute glaucoma. J.ophthalmol.(Ukraine).2018;2:34-39. 


12.Zadorozhnyy O, Korol A, Nevska A et al. Сiliary body imaging with transpalpebral near-infrared transillumination (Pilot study). Klinika oczna. 2016;3:184-6.

13.Fong AW, Lee GA, O'Rourke P et al. Management of neovascular glaucoma with transscleral cyclophotocoagulation with diode laser alone versus combination transscleral cyclophotocoagulation with diode laser and intravitreal bevacizumab. Clin. Exp. Ophthalmol. 2011;39 (4):318-23.

Crossref   PubMed   

14.Iliev ME, Gerber S. Long-term outcome of trans-scleral diode laser cyclophotocoagulation in refractory glaucoma. Br. J. Ophthalmol. 2007;91:1631– 5.

Crossref    PubMed  

15.Wei WB, Xu L, Jonas JB et al. Subfoveal choroidal thickness: the Beijing Eye Study. Ophthalmology. 2013;120:175–80. 

Crossref    PubMed

16.Hairston RJ, Maguire AM, Vitale S. Morphometric analysis of pars plana development in humans. Retina. 1997;17 (2):135-8.  

Crossref    PubMed  

17.Oliveira C, Tello C, Liebmann JM.  Ciliary body thickness increases with increasing axial myopia. Am. J. Ophthalmol. 2005;140 (2):324-5.

Crossref    PubMed

18.Wang Z, Chung C.,  Lin J. Quantitative Measurements of the Ciliary Body in Eyes with Acute Primary-Angle Closure. Invest. Ophthalmol. Vis. Sci. 2016;57:3299-305.

Crossref     PubMed

19.Vogel A, Dlugos C,  Nuffer R et al. Optical properties of human sclera and their significance for trans-scleral laser use. Fortschr. Ophthalmol. 1991;88(6):754-61.

20.Linnik LA, Privalov AP, Chechin PP, Zheltov GI, Tverskoĭ IuL.Laser transscleral contact-compression coagulation of the fundus oculi tissues. Oftalmol Zh. 1989;(6):362-4. In Russian

The authors certify that they have no conflicts of interest in the subject matter or materials discussed in this manuscript.