J.ophthalmol.(Ukraine).2019;2:28-32.

http://doi.org/10.31288/oftalmolzh201922832

Received: 19 November 2018; Published-online: 24 April 2019


Value of neurohumoral dysfunction in the pathogenesis of traumatic optic neuropathy

N.M. Moyseyenko, Cand Sc (Med)

Ivano-Frankivsk National Medical University;  Ivano-Frankivsk (Ukraine) 

E-mail: natalymoyseenko@gmail.com

TO CITE THIS ARTICLE: Moyseyenko NM. Value of neurohumoral dysfunction in the pathogenesis of traumatic optic neuropathy. J.ophthalmol.(Ukraine).2019;2:28-32. http://doi.org/10.31288/oftalmolzh201922832


Background: It is not known in which way neurohumoral properties of the hypothalamus undergo changes due to traumatic optic nerve neuropathy (TON).

Purpose: To investigate the value of neurohumoral dysfunction in the pathogenesis of TON.

Materials and Methods: Trauma was induced in the right orbital optic nerve in adult rabbits (n = 30, the experimental group). Controls were 30 intact rabbits. Semi-fine and ultra-fine sections were cut, and electron microscopy and morphometry of the right intracranial optic nerve and suprachiasmic hypothalamus nucleus was performed 30 days after traumatic event.

Results: Traumatic injury to the orbital optic nerve in rabbits caused reactive edema and destructive changes in the intracranial optic nerve and suprachiasmic hypothalamus nucleus. Decreased volumetric density of neurosecretory granules and increased numbers of pyknomorphic cells at the final stages of their life cycle result in decreased steroid production. This, in turn, promotes inflammatory reactive optic nerve lesions.

Conclusion: Neurohumoral dysfunction is an important mechanism of the pathogenesis of traumatic optic neuropathy, and, if corrected, will improve treatment outcomes.

Keywords: traumatic optic nerve neuropathy, neurohumoral dysfunction, suprachiasmic hypothalamus nucleus, neurosecretory granules

References

1.Hall ED, Detloff MR, Johnson K. Peroxynitrite-mediated protein nitration and lipid peroxidation in a mouse model of traumatic brain injury. J Neurotrauma. 2004 Jan;21(1):9-20.

Crossref    PubMed

2.Faden A.I., Wu J., Stoica B.A., Loane D.J. Progressive inflammatory-mediated neurodegeneration after traumatic brain or spinal cord injury. Br J Pharmacol. 2016 Feb;173(4):681-91. 

Crossref    PubMed

3.Morganti-Kossmann MC, Satgunaseelan L, Bye N. Modulation of immune response by head injury. Injury. 2007 Dec;38(12):1392-400.

Crossref    PubMed 

4.Morganti-Kossmann MC, Rancan M, Otto VI. Role of cerebral inflammation after traumatic brain injury: a revisited concept. Shock. 2001 Sep;16(3):165-77.

Crossref   PubMed  

5.Morganti-Kossmann MC, Hans VH, Lenzlinger PM. TGF-beta is elevated in the CSF of patients with severe traumatic brain injuries and parallels blood-brain barrier function. J Neurotrauma. 1999 Jul;16(7):617-28.

Crossref    PubMed

6.Pasisnichenko OM. [Physiology of the autonomic nervous system: a learning manual].  Kyiv; 2006. Ukrainian.

7.Klingbeil GE, Cline P. Anterior hypopituitarism: a consequence of head injury. Arch Phys Med Rehabil. 1985 Jan;66(1):44-6.

8.Kaulfers AM, Backeljauw PF, Reifschneider K. Endocrine dysfunction following traumatic brain injury in children. J Pediatr. 2010 Dec;157(6):894-9.

Crossref   PubMed  

9.Mesquita J, Varela A., Medina J.L. Trauma and the endocrine system. Endocrinol Nutr. 2010 Dec;57(10):492-9.

Crossref    PubMed

10.Su DH, Chang YC, Chang CC. Post-traumatic anterior and posterior pituitary dysfunction. J Formos Med Assoc. 2005 Jul;104(7):463-7.

11.Einaudi S, Bondone C. The effects of head trauma on hypothalamic-pituitary function in children and adolescents. Curr Opin Pediatr. 2007 Aug;19(4):465-70.

Crossref   PubMed

12.Moiseenko NM. Morphofunctional aspects of restorative processes in the optic nerve after traumatic injury under the influence of high doses of corticosteroids. J Ophthalmol (Ukraine). 2015;6:37-41. Ukrainian.

Crossref  

13.Sarikcioglu L, Demirel BM, Utuk A. Walking track analysis: an assessment method for functional recovery after sciatic nerve injury in the rat. Folia Morphol (Warsz). 2009 Feb;68(1):1-7.

14.Schmidt AP, Paniz L, Schallenberger C, et al. Guanosine prevents thermal hyperalgesia in a rat model of peripheral mononeuropathy. J Pain. 2010 Feb;11(2):131-41. 

Crossref   PubMed   

15.Bove L, Picardo M, Maresca V, Jandolo B, Pace A. A pilot study on the relation between cisplatin neuropathy and vitamin E. J Exp Clin Cancer Res. 2001 Jun;20(2):277-80.

16.Helwig BG, Parimi S, Ganta CK. Aging alters regulation of visceral sympathetic nerve responses to acute hypothermia. Am J Physiol Regul Integr Comp Physiol. 2006 Sep;291(3):R573-9.

Crossref    PubMed  

17.Bulyk RY. [Ultrastracture of hypothalamic supraoptic nucleus neurons under light derivation conditions]. Visnyk naukovykh doslidzhen. 2008;1:78-80. Ukrainian.

18.Zhurakivska OYa. [Age-related morphological changes in small-cell hypothalamic nuclei at day 14 of streptozotocin-induced diabetes]. Svit meditsiny i biologii. 2014;4:123-7. Ukrainian.

19.Levytskyi VA, Shovkova NI. [Facial nerve tissue ultrastructure under normal conditions and conditions of experimental neuropathy].  Visnyk morfologii. 2009;1:38-43. Ukrainian.

20.Doghri T, Bouguerra R, Ezzaouia G, Ben Slama C, Ladjimi A, Ben Njima S. [Post-traumatic anterior pituitary insufficiency. Apropos of 2 cases]. Ann Endocrinol (Paris). 1996;57(2):117-21. French.

The authors certify that they have no conflicts of interest in the subject matter or materials discussed in this manuscript.