Офтальмол. журн. — 2022. — № 3. — С. 50-53.

УДК 617.7

http://doi.org/10.31288/oftalmolzh202235053


Choroideremia – A clinical insight and differential diagnosis

Ali Nouraeinejad, Ph.D.

University College London (UCL); London (United Kingdom)

E-mail:  AliNouraeinejad@yahoo.com

ЯК ЦИТУВАТИ: Nouraeinejad Ali. Choroideremia – A clinical insight and differential diagnosis / Ali Nouraeinejad // Офтальмол. журн. — 2022. — № 3. — С. 50-53.    http://doi.org/10.31288/oftalmolzh202235053


Choroideremia is an X-linked recessive inherited, bilateral progressive chorioretinal dystrophy/degeneration leading to blindness by late adulthood. However, it can be confused occasionally with other conditions, especially retinitis pigmentosa due to their shared clinical manifestations. Since the management and patients' counseling differ between those conditions listed in the differential diagnosis, it is important for clinicians to come to the right diagnosis. This article is trying to make a differential diagnosis between choroideremia and other conditions based on the current knowledge of these disorders.

Key words: Retinal dystrophy, Choroideremia, Retinitis pigmentosa, Chorioretinal degeneration, Differential diagnosis 

 

References

1.Nouraeinejad A. Differential Diagnosis in Optometry and Ophthalmology. Second Edition. Iran: Noruzi Publication; 2017.

2.Katz BJ, Yang Z, Payne M, et al. Fundus appearance of choroideremia using optical coherence tomograpy. Adv Exp Med Biol. 2006;572:57-61. doi: 10.1007/0-387-32442-9_9

3.Zinkernagel MS, MacLaren RE. Recent advances and future prospects in choroideremia. Clin Ophthalmol. 2015;9:2195–2200. doi: 10.2147/OPTH.S65732 

4.Freund PR, Sergeev YV, MacDonald IM. Analysis of a large choroideremia dataset does not suggest a preference for inclusion of certain genotypes in future trials of gene therapy. Mol Genet Genomic Med. 2016;4:344–358. doi: 10.1002/mgg3.208

5.Heon E, Alabduljalil T, McGuigan ID, et al. Visual function and central retinal structure in choroideremia. Invest Ophthalmol Vis Sci. 2016;57:377–387. doi: 10.1167/iovs.15-18421  

6.Mitsios A, Dubis AM, Moosajee M. Choroideremia: from genetic and clinical phenotyping to gene therapy and future treatments. Ther Adv Ophthalmol. 2018;10:1-18.  

7.Dong S, Tsao N, Hou Q, et al. US Health Resource Utilization and Cost Burden Associated with Choroideremia. Clin Ophthalmol. 2021;15:3459-3465. 

8.Moosajee M, Ramsden SC, Black GC, et al. Clinical utility gene card for: choroideremia. Eur J Hum Genet. 2014;22(4):e1-e4. 

9.Sankila EM, Tolvanen R, van den Hurk JAJM, et al. Aberrant splicing of the CHM gene is a significant cause of choroideremia. Nat Genet. 1992; 1: 109–113. 

10.MacDonald IM, Sereda C, McTaggart K, et al. Choroideremia gene testing. Expert Rev Mol Diagn. 2004; 4: 478–484. 

11.Coussa RG, Kim J, Traboulsi EI. Choroideremia: effect of age on visual acuity in patients and female carriers. Ophthalmic Genet. 2012; 33: 66–73. 

12.Pennesi ME, Birch DG, Duncan JL, et al. Choroideremia: retinal degeneration with an unmet need. Retina. 2019;39:2059–2069. 

13.Bonilha VL, Trzupek KM, Li Y, et al. Choroideremia: analysis of the retina from a female symptomatic carrier. Ophthalmic Genet. 2008; 29: 99–110. 

14.Thobani A, Anastasakis A, Fishman GA. Microperimetry and OCT findings in female carriers of choroideremia. Ophthalmic Genet. 2010;31(4):235-9. 

15.Edwards TL, Groppe M, Jolly JK, et al. Correlation of retinal structure and function in choroideremia carriers. Ophthalmology. 2015; 122: 1274–1276. 

16.Khan KN, Islam F, Moore AT, et al. Clinical and genetic features of choroideremia in childhood. Ophthalmology. 2016; 123: 2158–2165. 

17.Zweifel SA, Engelbert M, Laud K, et al. Outer Retinal Tubulation: A Novel Optical Coherence Tomography Finding. Arch Ophthalmol. 2009;127(12):1596–1602. 

18.Genead MA, Fishman GA. Cystic macular oedema on spectral-domain optical coherence tomography in choroideremia patients without cystic changes on fundus examination. Eye 2011; 25: 84–90. 

19.Shen LL, Ahluwalia A, Sun M, et al. Long-term natural history of visual acuity in eyes with choroideremia: a systematic review and meta-analysis of data from 1004 individual eyes. Br J Ophthalmol. 2021;105:271–8. 

20.Campos-Pavon J, Torres-Pena JL. Choroidal neovascularization secondary to choroideremia. Arch Soc Esp Oftalmol. 2015; 90: 289–291. 

21.Yang J, Wang LN, Yu RG, et al. Multimodal imaging of the carriers of choroideremia and X-linked retinitis pigmentosa. Int J Ophthalmol. 2018;11(10):1721-1725. 

22.Nanda A, Salvetti A.P, Martinez-Fernandez de la Camara C, MacLaren RE. Misdiagnosis of X-linked retinitis pigmentosa in a choroideremia patient with heavily pigmented fundi. Ophthalmic Genetics. 2018; 39(3):380-383. 

23.Guo H, Li J, Gao F, et al. Whole-exome sequencing reveals a novel CHM gene mutation in a family with choroideremia initially diagnosed as retinitis pigmentosa. BMC Ophthalmol. 2015;15:85. 

24.Lee TKM, McTaggart KE, Sieving PA, et al. Clinical diagnoses that overlap with choroideremia. Can J Ophthalmol. 2003; 38: 364–372. 

25.Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. Lancet. 2006; 368: 1795–1809. 

26.Bowne SJ, Humphries MM, Sullivan LS, et al. A dominant Mutation in RPE65 identified by whole-exome sequencing causes retinitis pigmentosa with choroidal involvement. Eur J Hum Genet. 2011; 19: 1074–1081. 

27.van den Hurk JA, Schwartz M, van Bokhoven H, et al. Molecular basis of choroideremia (CHM): mutations involving the Rab escort protein-1 (REP-1) gene. Hum Mutat. 1997;9(2):110-7. 

28.Genead MA, Fishman GA, Grover S. Hereditary choroidal diseases. In: Retina. 5th ed. Amsterdam: Elsevier, 2012, pp. 891–898. 

29.Sergouniotis PI, Davidson AE, Lenassi E, et al. Retinal structure, function, and molecular pathologic features in gyrate atrophy. Ophthalmology. 2012; 119: 596–605. 

30.Kabunga P, Lau AK, Phan K, et al. Systematic review of cardiac electrical disease in Kearns-Sayre syndrome and mitochondrial cytopathy. Int J Cardiol. 2015; 181: 303–310. 

31.Halford S, Liew G, MacKay DS, et al. Detailed phenotypic and genotypic characterization of bietti crystalline dystrophy. Ophthalmology. 2014; 121: 1174–1184. 

 

Information about authors and disclosure of information

Corresponding Author: Ali Nouraeinejad, Ph.D., Address: Department of Clinical Ophthalmology, University College London (UCL), London, United Kingdom. E-mail: AliNouraeinejad@yahoo.com

Acknowledgements: The author would like to express his honest gratitude and high respect for the lifetime support of his father, Mohammad Nouraeinejad.

Compliance with ethical guidelines: Review and original based materials have been appropriately cited and the ethical guidelines have been respected.

Funding: This research did not receive any specific grant from funding agencies in the public, commercial, or nonprofit sectors. 

Conflict of interest: The author declares no conflict of interest.

Abbreviation: REP1 – Rab escort protein 1; XLR – X-linked recessive; RPE – retinal pigment epithelium; OCT – optical coherence tomography; CNV – choroidal neovascularization; FAF – fundus autoflorescence; OCTA – optical coherence tomography angiography; AOSLO – confocal adaptive optics scanning light ophthalmoscopy; FFA – Fundus florescein angiography; AD – Autosomal dominant; AR – autosomal recessive; OAT – ornithine-delta-aminotransferase. 

Received  05.02.22