J.ophthalmol.(Ukraine).2021;3:61-65.

Fulltext Pdf 


http://doi.org/10.31288/oftalmolzh202136165

Received: 21 January 2021; Published on-line: 29 June 2021


Modern aspects of using of ultrasonic energy in cataract and vitreoretinal surgery

B. M. Aznabaev,  T. I. Dibaev, T. R. Mukhamadeev, A. S. Vafiev, G. M. Idrisova 

Bashkir State Medical University; 

ZAO Optimedservis; Ufa (Russia)

E-mail: idguma@mail.ru

TO CITE THIS ARTICLE:Aznabaev BM, Dibaev TI, Mukhamadeev TR, Vafiev AS, Idrisova GM. Modern aspects of using of ultrasonic energy in cataract and vitreoretinal surgery. J.ophthalmol.(Ukraine).2021;3:61-65.  http://doi.org/10.31288/oftalmolzh202136165


The review demonstrates current data on the nature of ultrasound, its effect on biological structures and the possibilities of using ultrasound for the diagnosis, conservative and surgical treatment of eye diseases. The article contains descriptions of technologies of cataract surgery using ultrasonic energy, as well as new possibilities of using ultrasound not only to remove the nucleus, but also to remove the cortex of the lens, and modern applications of the energy of ultrasound in vitreoretinal surgery.

Кey words: ultrasound, phacoemulsification, ultrasonic aspiration of cortex, ultrasonic vitrectomy, vitreoretinal surgery

Disclaimers. We declare that the views expressed in the submitted article are our own and not an official position of the institution or funder.

Conflict of interest. We declare that we have no conflict of interest.

 

Reference

1.Akopyan BV, Ershov YuA. The basics of the interaction of ultrasound with biological objects: Ultrasound in medicine, veterinary medicine and experimental biology. Moscow: Izd. MGTU im NE Baumana; 2005. 224 p. In Russian.

2.Fridman FE, Gundorova RA, Kodzov MB. Ultrasound in ophthalmology. Moscow: Medicine; 1989. 256 p. In Russian.

3.Gardner SE, Frantz RA, Schmidt FL. Effect of electrical stimulation on chronic wound healing: a meta-analysis. Wound Repair Regen. 1999; 7 (6): 495-503. 

Crossref   PubMed

4.Dalecki D, Raeman CH, Child SZ, Cox C, Francis CW, Meltzer RS, et al. Hemolysis in vivo from exposure to pulsed ultrasound. Ultrasound Med Biol. 1997; 23 (2): 307-313.

Crossref 

5.Carovac A, Smajlovic F, Junuzovic D. Application of Ultrasound in Medicine. Acta Inform Med. 2011; 19(3): 168–171.

Crossref   PubMed 

6.Ranganayakulu SV, Rao NR, Gahane L. Ultrasound applications in Medical Sciences. IJMTER. 2016; 03 (02): 287-293.

7.Mundt GH, Hughes WE. Ultrasonics in ocular diagnosis. Am J Ophthalmol. 1956; 41 (3): 488–498.

Crossref  

8.Oksala A, Lehtinen A. Diagnostic value of ultrasonics in ophthalmology. Ophthalmologica. 1957; 134 (3): 387–395.

Crossref   PubMed 

9.Marmur RK. Ultrasonic therapy and diagnosis of eye diseases. Kiev: Zdorovya; 1974. 166 p. In Russian.

10.Baum G, Greenwood I. The application of ultrasonic locating techniques to ophthalmology: theoretic considerations and acoustic properties of ocular media: Part 1. Reflective properties. Am J Ophthalmol. 1958; 46 (5): 319–329.

Crossref  

11.Ossoinig KC. Standardized echography: basic principles, clinical applications and results. Int Ophthalmol Clin. 1979; 19 (4): 127–210.

Crossref   PubMed 

12.Bronson NR, Turner FT. A simple B scan ultrasonoscope. Arch Ophthalmol. 1973; 90 (3): 237–238.

Crossref   PubMed 

13.Aburn NS, Sergott RC. Orbital colour Doppler imaging. Eye. 1993; 7: 639–647.

Crossref   PubMed 

14.Guthoff R, Berger RW, Winkler Р. Doppler ultrasonography of the ophthalmic and central retinal vessels. Arch Ophthalmol. 1991; 109 (4): 532–536.

Crossref   PubMed 

15.Pavlin CJ, Harasiewicz K, Sherar MD, Foster FS. Clinical use of ultrasound biomicroscopy. Ophthalmology. 1991; 98 (3): 287–295.

Crossref   

16.Kiseleva TN, Zaitsev MS, Lugovkina KV. The Safety of Diagnostic Ultrasound in Ophthalmology. Ophthalmology in Russia. 2018; 15 (4): 447–454. In Russian.

Crossref   

17.Kelman CD. Phaco emulsification and aspiration. A new technique of cataract removal. A preliminary report. Am J Ophthalmol. 1967; 64 (1): 23–35.

Crossref 

18.Kelman CD. Phaco-emulsification and aspiration: A progress report. Am J Ophthalmol. 1969; 67(4): 464-477.

Crossref  

19.Cimino WW, Bond LJ. Physics of ultrasonic surgery using tissue fragmentation: part I. Ultrasound Med Biol. 1996; 22 (1): 89-100.

Crossref  

20.Pacifico R. Ultrasonic energy in phacoemulsification: Mechanical cutting and cavitation. J Cataract Refract Surg. 1994; 20 (3): 338-341.

Crossref  

21.Packer M, Fishkind WJ, Fine IH, Seibel BS. The physics of phaco: A review. J Cataract Refract Surg. 2006; 31 (2): P. 424-431.

Crossref   PubMed 

22.Gupta I, Cahoon JM, Gardiner G, Garff K, Henriksen BS, Pettey JH, et al. Effect of increased vacuum and aspiration rates on phacoemulsification efficiency. J Cataract Refract Surg. 2015; 41 (4): 836-841.

Crossref   PubMed 

23.Hayashi K, Hayashi H, Nakao F, Hayashi F. Risk factors for corneal endothelial injury during phacoemulsification. J Cataract Refract Surg. 1996; 22 (8): 1079-1084.

Crossref 

24.Beesley RD, Olson RJ, Brady SE. The effects of prolonged phacoemulsification time on the corneal epithelium. Ann. Ophthalmol. 1986; 18 (6): 216-219, 222.

25.Sippel KC, Pineda R. Phacoemulsification and thermal wound injury. Semin Ophthalmol. 2002; 17: 102-109.

Crossref   PubMed 

26.Holst A, Rolfsen W, Svensson B, Ollinger K, Lundgren B. Formation of free radicals during phacoemulsification. Curr Eye Res. 1993; 12 (4): 359-365.

Crossref   PubMed 

27.Cameron MD, Poyer JF, Aust SD. Identification of free radicals produced during phacoemulsification. J Cataract Refract Surg. 2001; 27 (3): 463-470.

Crossref  

28.Topaz M, Shuster V, Assia EI, Meyerstein D, Meyerstein N, Mazor D, et al. Acoustic cavitation in phacoemulsification and the role of antioxidants. Ultrasound Med Biol. 2005; 31 (8): 1123-1129.

Crossref   PubMed 

29.Yow L, Batsi S. Physical and mechanical principles of phacoemulsification and their clinical relevance. Indian J Ophthalmol. 1997; 45: (4): 241-249.

30.Davison JA. Bimodal capsular bag phacoemulsification: A serial cutting and suction ultrasonic nuclear dissection technique. J Cataract Refract Surg. 1989; 15 (3): 272–282.

Crossref  

31.Gimbell HV. Divide and conquer nucleofractis phacoemulsification: development and variations. J Cataract Refract Surg. 1991; 17 (3): 281-291.

Crossref   

32.Badoza D, Mendy JF. Phacoemulsification using the burst mode. J Cataract Refract Surg. 2003; 29 (6): 1101-1105.

Crossref   

33.Fine IH, Hoffman RS, Packer M. New phacoemulsification technologies. J Cataract Refract Surg. 2002; 28 (6): 1054-1060.

Crossref   

34.Fine IH, Hoffman RS, Packer M. Power modulations in new phacoemulsification technology: Improved outcomes. J Cataract Refract Surg. 2004; 30 (5): 1014-1019. 

Crossref   PubMed

35.Alio JL, Fine IH. Minimizing incisions maximizing outcomes in cataract surgery. NY: Springer; 2010. 319 p.

Crossref  

36.Seibel BS. Phacodynamics: Mastering the Tools and Techniques of Phacoemulsification Surgery. Fourth Edition. NY: SLACK Inc; 2004. 400 p. 

37.Aznabaev BM, Ramazanov VN, Mukhamadeev TR. New phacoemulsification ultrasound power modulation and experimental estimation of its efficiency. Refraktsionnaya khirurgiya i oftal'mologiya. 2006; 6(1): 30-37. In Russian. 

38.Aznabaev BM, Noskov VM, Ramazanov VN, Rakhimov AF, Dibaev TI, Mukhamadeev TR. Ultrasonic instrument of phacoemulsifier with three-dimensional vibrations: patent RF, № 2603718 C2; 2016. In Russian. 

39.Temirov N.E. Hydromonitor phacofragmentation and vitrectomy. Theoretical, experimental, clinical substantiation. The Russian Annals of Ophthalmology. 1982; (2): 20-25. In Russian.

40.Mackool RJ, Brint SF. AquaLase: a new technology for cataract extraction. Curr Opin Ophthalmol. 2004; 15: 40-43.

Crossref   PubMed 

41.Hoffman RS, Fine IH, Packer M, Brown LK. Comparison of sonic and ultrasonic phacoemulsification using Staar Sonic Wave system. J Cataract Refract Surg. 2002; 28 (9): 1581-1584.

Crossref   

42.Kopaev SYu. Clinical and experimental justification for the combined use of neodymium YAG 1.44 μm and helium-neon 0.63 μm lasers in cataract surgery [dissertation]. [Moscow]. The S. Fyodorov Eye Microsurgery Federal State Institution. 2014; 338 p. In Russian.  

43.Kopaeva VG, Andreev YuV. Laser cataract extraction. М.: Oftal'mologiya; 2011. 262 p. In Russian. 

44.Dalton M. Laser-assisted cataract surgery: Bringing new technologies into the fold. EyeWorld, 2011. [cited 2020 Sep 4]; Available from: http://www.eyeworld.org/article-bringing-new-technologies-into-the-fold

45.Kostenev SV. Femtosecond laser technology – a development vector – cataract surgery. Vestnik novykh meditsinskikh tekhnologii. 2012; 12(3): 112-114. In Russian.

46.Mendez A, Manriquez AO. Comparison of Effective Phacoemulsification and Pulsed Vacuum Time for Femtosecond Laser–Assisted Cataract Surgery. ASCRS Cornea Congress. San Diego, 2015. [cited 2020 Sep 4]; Available from: https://ascrs.confex.com/ascrs/15am/webprogram/Paper18055.html

47.Buratto L, Werner L. Zanini M, Apple DJ. Phacoemulsification: Principles and Techniques, Second Edition. SLACK Inc; 2003. 768 p. 

48.Federal clinical guidelines for the provision of eye care for patients with age-related cataracts. Expert Council on the problem of cataract surgical treatment. Interregional Association of Ophthalmologist. Moscow: Ophthalmology; 2015. 32 p. In Russian. 

49.Aznabaev BM, Dibaev TI, Mukhamadeev TR, Idrisova GM. Clinical performance of system for ultrasonic cortex aspiration during phacoemulsification. Saratov Journal of Medical Scientific Research. 2018; 14 (4): 811–815. In Russian. 

50.Aznabaev BM, Dibaev TI, Mukhamadeev TR, Idrisova GM. Corneal microarchitectonics in phacoemulsification using a system for ultrasonic cortex aspiration. Sovremennye tekhnologii v oftal'mologii. 2019; 5 (30): 9-13. In Russian.

Crossref  

51.Idrisova GM. Thermal safety of a system for ultrasonic aspiration of lens cortex. Saratov Journal of Medical Scientific Research. 2018; 14 (4): 919–922. In Russian. 

52.Girard LJ, Rodriguez J, Mailman ML, Romano TJ. Cataract and Uveitis management by pars plana lensectomy and vitrectomy by ultrasonic fragmentation. Retina. 1985; 5 (2): 108-114.

Crossref   PubMed 

53.Kossovsky LV, Stolyarenko GE, Kossovskaya IL. Application of the domestic ultrasonic phakofragmentator in eye surgery (communication 2). The Russian Annals of Ophthalmology. 1983; (3): 29-33. In Russian.

54.Bopp S, El-Hifnaw E, Bornfeld N, Laqua H. Retinal lesion experimentally produced by intravitreal ultrasound. Graefe’s Arch Clin Exp Ophthalmol. 1993; 231: 295-302. 

Crossref   PubMed

55.Machemer R. A new concept for vitreous surgery. Surgical technique and complication. Am J Ophthalmol. 1972; 74 (6): 1022-1033. 

Crossref 

56.Aznabaev BM, Shirshov MV, Mukhamadeev TR, Ramazanov VN, Yamlikhanov AG, Dibaev TI. New algorithm of vitrectomy system control. Kataraktalnaya i refraktsionnaya khirurgiya. 2013; 13 (2): 37-40. In Russian. 

57.Aznabaev BM, Dibaev TI, Mukhamadeev TR, Vafiev AS, Shavaliev IKh. Ultrasonic vitrectomy: performance evaluation in experimental and clinical conditions. Practical Medicine. 2018; 16 (4): 56-60. In Russian.

Crossref  

58.Saxena S, Meyer CH, Ohji M, Akduman L. Vitreoretinal surgery. Jp Medical; 2012. 442 p.

Crossref 

59.Stanga PE, Pastor-Idoate S, Zambrano I, Carlin P, McLeod D. Performance analysis of a new hypersonic vitrector system. PLos One. 2017; 12 (6): e0178462.

Crossref   PubMed 

60.Pastor-Idoate S, Bonshek R, Irion L, Zambrano I, Carlin P, Mironov A, et al. Ultrastructural and histopathologic findings after pars plana vitrectomy with a new hypersonic vitrector system. Qualitative preliminary report. PLoS One. 2017; 12(4): e0173883.

Crossref   PubMed 

61.Wuchinich D. Ultrasonic vitrectomy instrument. Physics Procedia. 2015; 63: 217-222.

Crossref 

62.Aznabaev BM, Dibaev TI, Mukhamadeev TR, Vafiev AS, Shavaliev IKh. Twenty-five gauge ultrasonic vitrectomy. Experimental and Clinical Performance Analysis. Retina. 2020; 40 (7): 1443-1450.

Crossref   PubMed

63.Pavlidis M. Two-Dimensional Cutting (TDC) Vitrectome: In Vitro Flow Assessment and Prospective Clinical Study Evaluating Core Vitrectomy Efficiency versus Standard Vitrectome. J Ophthalmol. 2016; 2016: 3849316.

Crossref   PubMed 

64.Abulon DJ, Buboltz DC. Porcine Vitreous Flow Behavior During High-Speed Vitrectomy up to 7500 Cuts per Minute. Transl Vis Sci Technol. 2016; 5(1): 7.

Crossref   PubMed 

65.Hubschman JP, Bourges JL, Tsui I, Reddy S, Yu F, Schwartz SD. Effect of cutting phases on flow rate in 20-, 23- and 25-gauge vitreous cutters. Retina. 2009; 29(9): 1289-1293.

Crossref   PubMed  

66.Aznabaev BM, Dibaev TI, Mukhamadeev TR, Vafiev AS, Shavaliev IKh. Thermal imaging characteristics of ultrasonic and pneumatic guillotine 25-gauge vitrectors. Saratov Journal of Medical Scientific Research. 2018; 14 (4): 916–919. In Russian.