J.ophthalmol.(Ukraine).2020;6:44-54.

 

http://doi.org/10.31288/oftalmolzh202064454

Received: 18 September 2020; Published on-line: 21 December 2020


Changes in endothelial nitric oxide synthase activity over time after induction of experimental diabetic retinopathy

Ya.V. Sirman1, I.V. Savytskyi2

1 Ukrainian Research Institute of Transport Medicine of the Ministry of Health of Ukraine; Odesa (Ukraine)

2 Odesa International Medical University; Odesa (Ukraine)

E-mail: farmakod@ukr.net

yanasirman@gmail.com

TO CITE THIS ARTICLE: Sirman YaV, Savytskyi IV.  Changes in endothelial nitric oxide synthase activity over time after induction of experimental diabetic retinopathy. J.ophthalmol.(Ukraine).2020;6:44-54. http://doi.org/10.31288/oftalmolzh202064454


Purpose: To examine changes in the activity of endothelial nitric oxide (NO) synthase in the development of endothelial dysfunction in experimental diabetic retinopathy corrected by various methods.

Material and Methods: Albino (Wistar) rats (weight, 180-200 g) were used in this study and divided into 7 groups 60 animals each.

Results: We found impaired endothelial function at day 30 of the experiment, and, subsequently, animals exhibited progression of pathological changes. Hypoglycemic agent only caused a mild, but not significant improvement in endothelial dysfunction, and did not allow restoration of normal synthesis of the proper amount of NO. Application of L-arginine and aflibercept in combination with hypoglycemic therapy for diabetic retinopathy led to repair of endothelial dysfunction and contributed to restoration of the physiological pathway for production of NO. Application of aflibercept and bromfenac in combination with hypoglycemic therapy for diabetic retinopathy led to a less pronounced effect than multi-component therapy including L-arginine, and this effect was not durable and significantly decreased by day 180. Application of aflibercept, L-carnitine and bromfenac in combination with hypoglycemic therapy showed more promising results than the above methods:  endothelial NO synthase (eNOS) activity increased at time point 1, and continued to increase subsequently, although normal values were not achieved.

Conclusion: Aflibercept, L-arginine and citicoline in combination with hypoglycemic therapy was the most effective method among those tested in this study, with eNOS activity not only increasing as early as day 30, but also continuing to increase subsequently (days 60 and 180) and achieving normal values at day 180.

Keywords: experimental diabetic retinopathy, endothelial dysfunction, endothelial NO synthase, correction, metformin, aflibercept, L-arginine, citicoline, L-carnitine, bromfenac

References

1.Gozhenko AI, Kuznetsova GS, Kuznetsova KS, Byts TM, Susla AB. [Endothelial dysfunction in the pathogenesis of complications of diabetes mellitus. Report 1.  Endothelial dysfunction: etiology, pathogenesis and diagnostic methods]. Endokrynologiia. 2017;22(2):171-81.

2.Sukhareva OIu, Shestakova MV. [Current standards and recommendations for therapy for type 2 diabetes mellitus: with a focus on metformin]. Consilium medicum. 2009;11(12):18-24. 

3.Steinmetz A, Fenselau S, Schrezenmeir Y. Treatment of dyslipoproteinemia in the metabolic syndrome. Exp Clin Endocrinol Diabetes. 2001;109(4):S548-59. 

Crossref   PubMed 

4.Kuznetsova ES, Kuznetsova AS, Shukhtin VV, Gozhenko AI. [Features of liver autoregulation in type 2 diabetes mellitus]. Ukrainskyi zhurnal nefrologii i dializu. 2015;4(49):21-6.

5.Kurkin DV, Logvinova EO, Bakulin DA, Volotova EV, Tiurenkov IN. [Endothelial protection by GPR119, a novel receptor target in animals with chronic cerebral circulation  insufficiency and experimental diabetes mellitus]. Sovremennyie problemy nauki i obrazovaniia. 2018;4. URL: http://www.science-education.ru/ru/article/view?id=27935. (Date of access: 06.09.2020). 

6.Van Sloten TT. Vascular dysfunction: At the heart of cardiovascular disease, cognitive impairment and depressive symptoms. Artery Res. 2017;19:18–23. 

Crossref  

7.Balabolkin MI, Nikishova MS, Nedosugova LV, Beloiartseva MF, Volkova AK. [Plasma nitric oxide levels in type 2 diabetes mellitus in the presence of treatment with diquertin and tanakan]. Sakharnyi diabet. 2004;1:16-7.

Crossref  

8.Reutov VP, Sorokina EG. [NO-synthase and nitritreductase components of the nitric oxide cycle]. Biochimiia. 1998;63(7):1029-40.

9.Violi F, Marino MT, Milite L. Loffredo L. Nitric oxide and its role in lipid peroxidation. Diabetes Metab Res Rev. Jul-Aug 1999; 15(4):283-8.

Crossref 

10.Arkhipova MM, Neroev VV, Baratova LL, Lysenko VS. [L-arginine in the lacrimal fluid of patients with diabetic retinopathy and possible role of nitric oxide in the pathogenesis of retinal ischemia]. Vestn Oftalmol. Jan-Feb 2000;116(2):23-4. Russian.

11.Arkhipova MM, Vanin AF. [Pathogenetic principles of the therapy of retinal ischemia in vascular diseases of the fundus oculi based on studies of the role of nitrogen oxide]. Vestn Oftalmol. Jan-Feb 2001;117(1):51-3. Russian.

12.Donati G, Pournaras C. Endogenous deficiency of Nitric Oxide is an aggravating factor in retinal vein occlusion.  Klin Monbl Augenheilkd. 1998 May;212(5):324-5. 

Crossref   PubMed  

13.Dzugkoev SG, Dzugkoeva FS, Metelskaia VA. [Role of nitric oxide in the formation of endothelial dysfunction in diabetes mellitus]. Kardiovaskuliarnaia terapiia i profilaktika. 2010;9(8):63-8. Russian.

14.Pasyechnikova NV, Moroz OA. [Protective effect of quercetin and lypoate of functional groups on proteins in retina with experimental diabetes]. Oftalmol Zh. 2015;3:76-81. 

Crossref  

15.Kaidash OA, Ivanov VV, Vengerovskii AI, Buiko EE, Shchepetkin IA. [Murine diabetes mellitus model induced by high‐fat diet and low‐dose streptozotocin]. Biulleten’ sibirskoi meditsiny. 2020;19(2):41-7. Russian.

Crossref   

16.Bairasheva VK, Babenko AYu, Dmitriev YuV, Bairamov AA, Chefu SG, Shatalov IS, Aref’ieva AN, Pchelin IYu, Khudiakova NV, Aliev PG, Grineva EN. [Role of metformin in the prevention of diabetic neuropathy in experimental type 2 diabetes mellitus]. Regionarnoie krovoobrashchenie i mikrotsirkuliatsia. 2016;15(3):70-80. Russian.

Crossref  

17.Prokrovskii MV, Prokrovskaia TG, Korchakov VI, Artiushkova EB. [Endothelioprotective properties of L-arginine in a nitric oxide deficiency model]. Eksp Klin Farmakol. Mar-Apr 2008;71(2):29-31. Russian.   

18.Gal-Or O, Livny E, Sella R, Nisgav Y, Weinberger D, Livnat T, et al. Efficacy of subconjunctival aflibercept versus bevacizumab for prevention of corneal neovascularization in a rat model. Cornea. 2016 Jul;35(7):991–6.

Crossref   PubMed  

19.Pavlova ON, Gulenko ON, Karimova EG, et al. [Changes in serum catalase activity over time after mechanical effect on the blood-retinal barrier]. Mezhdunarodnyi nauchno-issledovatelskii zhurnal. 2020;5(95) Part 1:153–8. Russian.

20.Bykov IL. [Effect of L-carnitine on metabolic disorders in rats with experimental acyl-CoA dehydrogenase deficiency]. Eksp Klin Farmakol. Nov-Dec 2004;67(6):48-52. Russian.   

21.Dzugkoev SG, Dzugkoeva FS, Gumanova NV, Metelskaia VA. [Effect of coenzyme Q10, afobazole and L-carnitine on endothelial function in rats with experimental diabetes mellitus. Kubanskyi nauchnyi meditsinskii vestnik. 2012;3(132):48-51. Russian.

22.Kovaliova OM, Demidenko GV, Gorbach TV. [Diagnosis of endothelial function: assessment of a vasoactive nitric oxide pool]. Ministry of Health of Ukraine. Ukrainian center for medical science information and patent and license activity. Kyiv: SPD- FO Tarasenko; 2006. Russian.

23.Lupan IV, Avramenko OV, Akbash KS. [Computer Statistical Packages: teaching aid]. Kirovohrad: KOD; 2015. Ukrainian. 

24.Monisha B, Vats P. Reactive metabolites and antioxidant gene polymorphisms in type 2 diabetes mellitus. Indian J Hum Genet. 2014 Jan;20(1):10-9.  

Crossref   PubMed 

25.Reutov VP, Sorokina EG, Okhotin VE, Kositsyn NS. [Cyclic nitric oxide transformations in the body of mammals]. Moscow:Nauka; 1988. Russian. 

26.Yarmysh NV, Grozna LN. [Endothelial dysfunction and its regulatory factors]. Visnyk problem biolohiyi ta medytsyny. 2014;3:37–43. Russian.

27.Casas JP, Cavalleri GL, Bautista LE, et al. Endothelial nitric oxide syntase gene polymorphisms and cardiovascular disease: a HuGE review. Am J Epidemiol. 2006 Nov 15;164(10):921-35. 

Crossref   PubMed  

28.Oak JH, Cai H. Attenuation of angiotensin II signaling recouples eNOS and inhibits nonendothelial NOX activity in diabetic mice. Diabetes. 2007 Jan;56(1):118-26. 

Crossref   PubMed 

29.Kuzminova NV, Serkova VK. [Vascular endothelial function in patients with essential hypertension]. Ukrainskyi terapevtychnyi zhurnal. 2008;2:21-7. 

30.Corretti MC, Anderson TJ, Beniamin FJ, et al. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Amer Coll Cardiol. 2002 Jan 16;39(2):257-65. 

Crossref  

31.Dahlof B, Devereux RB, Kjeldsen SE, et al. Cardiovascular morbidity and mortality in the Losartan Intervention for Endpoint reduction in hypertension study (LIFE): a randomized trial against atenolol. Lancet. 2002 Mar 23;359(9311):995-1003. 

Crossref  

32.Garaliene V. Endothelium and nitric oxide. Medicina (Kaunas). 2008;44(7):564-9.

Crossref   

33.Rippe C, Lesniewski L, Connell M, et al. Short-term calorie restriction reverses vascular endothelial dysfunction in old mice by increasing nitric oxide and reducing oxidative stress. Aging Cell. 2010 Jun;9(3):304-12. 

Crossref   PubMed

The authors certify that they have no conflicts of interest in the subject matter or materials discussed in this manuscript.