Oftalmol Zh. 2013; 5: 61-6.

Influence of the benzalkonium chloride on the oxidative-restored enzymes in the tissues of the anterior section of the eye

Gaidamaka TB 1, Senishin VI 2

 1SI «The Filatov Institute of Eye Diseases and Tissue Therapy NAMS of Ukraine», Odessa

2 Lviv Regional Hospital, Odessa,Ukraine

E-mail: oko_science@mail.ru

Introduction. Presence of both positive and negative properties of the eye drops preservative of benzalconia chloride (BAC) determines importance and necessity of the study of the pathogenic mechanisms of the effect of this widely used preservative in ophthalmology.

Aim of the study. To investigate the influence of BAC on the activity of the oxidation-reduction enzymes — lactate dehydrogenase, malate dehydrogenase and glucose-6-phosphate dehydrogenase of the cornea, conjunctiva and tear fluid in experiment.

Materials and methods. Activity of lactate dehydrogenase, malate dehydrogenase and glucose-6-phosphate dehydrogenase of the cornea, conjunctiva and tear fluid was determined in experiment on animals (17rabbits) after instillations of 0.02 % solution of the preservative benzalconia chloride made on the isotonic phosphate buffer (pH 7,3-7, 4).

Results. It was established that BAC reduced significantly the activity of the oxidation-reduction enzymes in the cornea and conjunctiva and increased their activity in the eye tear fluid.

Conclusions. The application of BAC affects significantly the course of the oxidation-reduction processes of the superficial structures of the eyeball, which in its turn results in reduction of the protective-adjustive potential of the anterior eye tissues and disturbance of the structural-functional properties of the eye cornea and conjunctiva.

Key words: anterior part of the eye, activity of the oxidcition-reduction enzymes

References

1.Anina ES, Martoplyas KV. Prevalence of the corneal dis-eases of the eye among the population in Ukraine. Theses of II International scientific conference of ophthalmologists of the Black Sea region. Odessa; 2004.

2.Gaidamaka TB, Senishin VI. Effect of preservative eye drops on the redox potential of glutathione in the tissues of the anterior eye. Oftalmol Zh. 2012; 6: 96- 100.

3.Nasledov A. SPSS computer analysis of the data in psy-chology and social sciences. SPb.: Piter; 2005. 416 p.

4.New methods of biochemical analysis. Izd. Leningradsk-ogo univer. 1991. 395 p.

5.Ammar DA, Noecker RJ, Kahook MY. Effects of benzalkonium chloride-preserved, polyquad-preserved, and sofZia-preserved topical glaucoma medications on human ocular epithelial cells. Adv. Ther. 2010; 27: 1-9.
Crossref

6.Ayaki M, Yaguchi S, Iwasawa A. Cytotoxicity of ophthal-mic solution with and without preservatives to human corneal endothelial cells, epithelial cells and conjunctival epithelial cells. Clin. Exp. Ophthalmol. 2008; 36: 553- 9.
Crossref

7.Ayaki M, Shimada K, Yaguchi S. Corneal and conjunctival toxicity of disinfectants assessing safety for use with oph-thalmic surgical instruments. Regul. Toxicol. Pharmacol. 2007; 48: 292-5.
Crossref

8.Barki W. H., Tahir M. Effects oftopical benzalkonium chlo-ride on corneal epithelium. Biomedica. 2007; 23: 65-70.

9.Baudouin C, Labbe A, Liang H. Preservatives in eyedrops: the good, the bad and the ugly. Prog. Retin. Eye Res. 2010; 29: 312-34.
Crossref

10.Debbasch C, Pisella P-J, Magda De Saint Jean. Mitochon-drial activity and glutathione injury in apoptosis induced by upreserved and preserved ?-blockers on chang conjunctival cells. Invest. Ophthalmol. Vis. Sci. 2001; 42: 2525- 33.

11.Dickinson DA, Forman HJ. Cellular glutathione and thiols metabolism. Biochem. Pharmacol. 2002; 64: 1019-26.
Crossref

12.Hopes M, Broadway DC. Preservative-free Treatment in Glaucoma Is a Sensible and Realistic Aim for the Future. Europ. Ophthalmic. Review. 2010; 4: 23-8.
Crossref

13.Hughes EH, Pretorius M, Eleftheriadis H. Long-term re-covery of the human corneal endothelium after toxic injury by benzalkonium chloride. Br. J. Ophthalmol. 2007; 91: 1460-3.
Crossref

14.Kahook MY, Ammar D. A. In vitro toxicity of topical ocular prostaglandin analogs and preservatives on corneal epithelial cells. J. Ocul. Pharm. Ther. 2010; 26: 259-63.
Crossref

15.Kahook MY, Noecker RJ. Comparison of corneal and con-junctival changes after dosing of travoprost preserved with sofZia, latanoprost with 0,02 % benzalkonium chloride, and preservative-free artifical tears. Cornea. 2008; 27: 339-43.
Crossref

16.Khot-Reiter S, Jessen BA. Evaluation of the cytotoxic ef-fects of ophthalmic solutions containing benzalkonium chloride on corneal epithelium using an organotypic 3-D model. BMC Ophthalmol. 2009; 9: 1471-5.
Crossref

17.Kim JR, Oh TH, Kim HS. Effect of benzalkonium chloride on the ocular surface of the rabbit. Jpn. J. Ophthalmol. 2011; 55: 283-93.
Crossref

18.Kozobolis VP, Detorakis ET, Maskaleris G. Corneal sen-sitivity changes following the instillation of latanoprost, bitamoprost, and travoprost eyedrops. Am. J. Ophthalmol. 2005; 139: 742-3.
Crossref

19.Leonardi A, Jose PJ, Zhan H. Tear and mucus eotaxin-1 and eotaxin-2 in allergic keratoconjunctivitis. Ophthalmol. 2003; 110: 487-92.
Crossref

20.Liang H, Baudouin C, Pauly A. Conjunctival and corneal reactions in rabbits following short- and repeated exposure to preservative-free tafluprost, commercially available latanoprost and 0,02 % benzalkonium chloride. Br. J. Ophthalmol. 2008; 92: 1275-82.
Crossref

21.Lin Z, Liu X, Zhou T. A mouse dry eye model induced by topical administration of benzalkonium chloride. Mol. Vis. 2011; 17: 257-64.

22.Majumdara S, Hippalgaonkara K, Repka M. A. Effect of chitosan, benzalkonium chloride and ethylendiaminetet-raacetic acid on permeation of acyclovir across isolated rabbit cornea. Int. J. Pharm. 2008; 348: 175-8.
Crossref

23.McCarey B, Edelgauser H. In Vivo corneal epithelial permeability following treatment with prostaglandin ana-logues with or without benzalkonium chloride. J. Ocul. Pharm. Ther. 2007; 23: 445-7.
Crossref

24.Pauly A, Meloni M, Brignole-Baudouin F. Multiple end-point analysis of the 3D-reconstituted corneal epithelium after treatment with benzalkonium chloride: early detection of toxic damage. Invest. Ophthalmol. Vis. Sci. 2009; 50: 1644- 52.
Crossref

25.Reim M, Weidenfeld E, Budi Santoso A. W. Oxidized and reduced glutathione levels of the cornea in vivo. Graefes Arch. Klin. Exp. Ophthalmol. 1979; 211: 165- 75.
Crossref

26.Trocme S, Hwang L-J, Bean GW. The role of benzalkonium chloride in the occurrence of punctate keratitis: a meta-analysis of randomized, controlled clinical trials. Ann. Pharmacother. 2010; 44: 1914-21.
Crossref

27.Whitson JT, Cavanagh HD, Lakshman N. Assessment of corneal epithelial integrity after acute exposure to ocular hypotensive agents preserved with and without benzalkonium chloride. Adv. Ther. 2006; 23: 663-71.
Crossref

28.Wilson F. M. Adverse external ocular effects of topical oph-thalmic therapy: an epidemiologic, laboratory, and clinical study. Tr. Am. Ophth. Soc. 1983; 19: 854-8.

29.Wu G, Fanf Y-Z, Yang S. Glutathione metabolism and its implication for health. J. Nutrition. 2004; 134: 489-92.
Crossref

30.Xiong C, Chen D, Liu J. A rabbit dry eye model induced by topical medication of a preservative benzalkonium chlo-ride. Invest. Ophthalmol. Vis. Sci. 2008; 49: 1850-6.
Crossref

31.Ye J, Wu H, Zhang H. Role of benzalkonium chloride in DNA strand breaks in human corneal epithelial cells. Graefes Arch. Clin. Exp. Ophthalmol. 2011; 249: 1681-7.
Crossref

32.Zhivov A, Kraak R, Bergter H. Influence of benzalkonium chloride on langerhans cells in corneal epithelium and de-velopment of dry eye in healthy volunteers. Curr. Eye Res. 2010; 35: 762-9.
Crossref