Changes in clinical condition of the eye and in parameters of cell and humoral immunity in iridocyclitis patients under the influence of anti-viral allokin-alpha

N.V. Konovalova, Dr. Sc. (Med.)
N. I. Khramenko, Cand. Sc. (Med.)
L. N. Velichko, Cand. Sc. (Med.)

SI “Filatov Institute of Eye Diseases and Tissue Therapy of the NAMS of Ukraine”
Odessa, Ukraine

Key words: iridocyclitis, allokin-alpha

Introduction. Iridocyclitis, inflammatory eye disease of the uvea, is a topical issue not only in clinical but social regard, considering its high prevalence and disability rates.

Purpose. To study changes in the clinical condition of the eye and the state of cellular and humoral immunity in iridocyclitis patients under the influence of allokin-alpha anti-viral drugs.

Material and Methods. We observed 41 patients (41 eyes) with acute and chronic iridocyclitis who underwent anti-viral allokin-alpha treatment at Inflammatory Eye Pathology Department at SI “The Filatov Institute of Eye Diseases and Tissue Therapy”.

Results. Over the treatment course we observed a significant increase in immunoregulatory index from 1.16% to 2.00%; a relative T-lymphocyte count increased from 38.2±0.5% to 63.4±1.2% and a relative CD-19 lymphocyte count decreased from 24.4% to 21.8%, which reached normal parameters at 18 days after treatment onset. The treatment resulted in VA improvement.

Conclusions. Using allokin-alpha anti-viral drug enables to raise treatment success in viral iridocyclitis patients and to improve VA against the background of inflammatory process reduction.

13]; the main producers of recombinant interferon are macrophages, T- and B-lymphocytes [14]. Taking into account these facts, it is reasonable to find out if there is a correlation between directivity and intensity of changes in cellular and humoral components of immunity when uveal tract inflammation develops and in respect of clinical signs of the disease and changes in cytokine component of immunity (due to interferon level in blood serum). Besides, immunological studies of the course of the disease will make it possible to correct pathogenic and etiopathologic treatment assigned, considering the pronouncement degree of damage in every patient. Since natural killer (NK) cells are capable to control the virus spread in as little as few hours after infection, many viruses have developed the mechanisms to modulate the activity of NK cells, “hiding” from immune response activation. The necessity to use antiviral drug with immunomodulatory activity, that increases immunobiological resistance, is obvious.

Allokin-alpha is an antiviral drug, one of a new family of natural antiviral peptides, the one of Ukraine’s immunomodulator that directly activates natural killers (NK) and acts directly in the affected area not inducing immune hyperresponsiveness. It belongs to pharmacological class “Antiviral and immuno-stimulant”.

Allokin-alpha is an antiviral drug, one of a new family of natural antiviral peptides, the one of Ukraine’s immunomodiulator that directly activates natural killers (NK) and acts directly in the affected area not inducing immune hyperresponsiveness. It belongs to pharmacological class “Antiviral and immunomodulatory drug. Interferon inducer”. Allokin-alpha is a synthetic linear cytokine-like oligopeptide with molecular weight of 1 265 Daltons and it consists of 13 L-amino-acids with alloferon as an oligopeptide with molecular weight of 1 265 Daltons. Its action is focused on enhancement and it consists of 13 L-amino-acids with alloferon as an oligopeptide with molecular weight of 1 265 Daltons.

The data obtained were statistically processed by Statistica 7.0 software using pairwise Student criterion with preliminary normality test.

### Results and Discussion

Changes in parameters of cellular and humoral immunity in viral iridocyclitis patients over the course of allokin-alpha treatment are given in Table 1. The inflammation onset was against the background of lymphopenia, which indicates secondary immunodeficiency and reduced immunoresistance of the organism. To assess the state of immune system, it is important to consider the state of CD-3 as a mirror reflecting pathologic processes in the diseased organism. In uveitis patients, we observed a significant decrease by 41%, p<0.05, (Table 1) in the amount of CD-3 lymphocytes in the peripheral blood, which was lower than that in control group patients. These changes evidence the apparent deficiency of a general T-lymphocyte pool in iridocyclitis patients. At 18 days after 6 allokin-alpha injections, a relative value of T-lymphocytes increased from (38.2±0.53)% up to (63.4±1.19)% (p<0.05).

CD-4 (T-helpers) are drawn a special attention to in inflammatory process since these cells play an important role nearly in all immune cell and antibody-mediated responses. Various CD-4 T-cells produce different cytokine sets for humoral immune response; they are known as well as TDTH cells (delayed-type hypersensitivity T cells), cytokines for cellular immunity. Besides, HIV enters T-cell through this receptor.

T-helper count before allokin-alpha treatment was decreased (by 33.3% (p<0.05) lower than age norm). It gradually increased over the course of treatment. At
18 days after therapy start, T-helper count settled down and reached the normal values.

CD-8 is a surface molecule of the most cytotoxic T-lymphosites. T-suppressor count in all viral iridocyclitis patients was found to be higher as compared to control. This tendency was kept and T-suppressor count remained increased (by 54% higher than the norm (р<0.05)) at 18 days after treatment start.

The immunoregulatory index (IRI) (CD-4/CD-8 ratio) in the peripheral blood is diagnostically valuable and prognostic informative parameter for immune system assessment.

As it appears from the data in Table 1, IRI increased significantly from 1.16 up to 2.00 (p=0.00008) over the course of treatment, nearing the normal range at the end of treatment (Table 1).

Studying the changes in CD-19 lymphocytes, we found that CD-19 lymphocyte level steadily decreased from 24.4% to 21.8 % at 18 days after treatment start.

Taking into account T-lymphocyte disorders in patients examined, the ratio of main immunoregulatory subpopulations of CD-4 and CD-8 lymphocytes is of interest. We determined significant changes in relative T-helper lymphocyte count in the peripheral blood as compared to control, which indicates autoimmune shifts in the peripheral blood of patients in comparison with control group of healthy patients. Against the background of apparent T-lymphocyte deficiency, we determined a decrease in CD-4 lymphocyte proportion in the peripheral blood of viral iridocyclitis patients as compared to control group values. Besides, CD 16 (NK) count increased significantly, that enhances body resistance to viral infection.

As for humoral immunity in uveitis patients, we detected an increase in relative B-lymphocyte count and IgA level as compared to norm. IgM level was increased and, after treatment, it decreased twice with its value settling down within the normal range. IgG level in iridocyclitis patients decreased twice over the course of treatment and substantially corresponded the norm (p<0.02).

The data obtained in assessment of cellular and humoral immunity in viral iridocyclitis patients are of practical importance with the point of choice of rational pathogenically-oriented treatment including anti-virus, desensitizing and immuncorrecting therapy. All patients were prescribed allokin-alpha as anti-virus therapy and immune system correction.

Outcomes of treatment performed showed the treatment success and positive changes in the clinical picture and visual acuity. To assess the efficacy of proposed treatment in uveitis patients, we used a number of criteria and, first of all, changes in VA. VA changes against the treatment in all groups of uveitis patients are given in Table 2.

Table 1. Changes in values of cellular and humoral immunity in viral iridocyclitis patients in the course of allokin-alpha treatment

<table>
<thead>
<tr>
<th>Immunity parameters</th>
<th>Changes in values of cellular and humoral immunity</th>
<th>Pre-treatment n=41</th>
<th>Post-treatment n=41</th>
<th>Control group (n=20)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M± SD</td>
<td>M± SD</td>
<td>M± SD</td>
<td></td>
</tr>
<tr>
<td>CD 3 (%)</td>
<td>38.2±0.53</td>
<td>63.7±1.19*</td>
<td>65.1 ± 3.42</td>
<td></td>
</tr>
<tr>
<td>CD 4 (%)</td>
<td>32.8±1.26</td>
<td>50.54±1.66*</td>
<td>48.1 ± 6.76</td>
<td></td>
</tr>
<tr>
<td>CD 8 (%)</td>
<td>28.2±0.77</td>
<td>25.2±1.18*</td>
<td>16.6 ± 4.78</td>
<td></td>
</tr>
<tr>
<td>CD4/CD8</td>
<td>1.16±0.05</td>
<td>2.00±0.08*</td>
<td>2.54 ± 1.67</td>
<td></td>
</tr>
<tr>
<td>CD 16 (%)</td>
<td>7.56±1.25</td>
<td>17.7±1.86*</td>
<td>19.4 ± 1.16</td>
<td></td>
</tr>
<tr>
<td>CD 19 (%)</td>
<td>24.4±0.8</td>
<td>21.8±0.73*</td>
<td>16.7 ± 3.44</td>
<td></td>
</tr>
<tr>
<td>Ig A (mg/ ml)</td>
<td>2.8±0.12</td>
<td>2.04±0.03*</td>
<td>1.2 ± 0.3</td>
<td></td>
</tr>
<tr>
<td>Ig M (mg/ ml)</td>
<td>2.23±0.17</td>
<td>1.21±0.07*</td>
<td>1.19± 0.15</td>
<td></td>
</tr>
<tr>
<td>Ig G (mg /ml)</td>
<td>18.23±1.32</td>
<td>10.01±0.19*</td>
<td>9.52 ± 1.37</td>
<td></td>
</tr>
</tbody>
</table>

Note: *- significant difference before and after treatment, p<0.05

Table 2. Changes in visual acuity in uveitis patients in the course of treatment

<table>
<thead>
<tr>
<th>Group studied</th>
<th>Visual acuity</th>
<th>Number of eyes</th>
<th>$\chi^2$ criterion difference pre- and post-treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-treatment</td>
<td>Post-treatment</td>
<td></td>
</tr>
<tr>
<td>Group i</td>
<td>&lt; 0.1</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>Group ii</td>
<td>0.1 – 0.3</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>Group iii</td>
<td>0.35-0.6</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>Group iv</td>
<td>0.7 – 1.0</td>
<td>5</td>
<td>13</td>
</tr>
</tbody>
</table>
According to examination data, the number of patients with VA < 0.1 significantly decreased after treatment (p=0.01) (Table 2) due to positive changes and a VA increase up to 0.3 and higher wherefore the patients moved the group (to groups ii and iii). The number of patients of group ii with VA < 0.3 decreased since a part of patients moved to group iii (VA 0.31-0.6) and group iv (VA 0.61-1.0). A significant increase in the number of eyes with high VA was noted in group iv. Thus, visual functions were improved in all acute and chronic iridocyclitis patients, undergone allokin-alpha treatment. Clinically, in iridocyclitis, we noted exudate and precipitate resorption, posterior synechiae breaking as early as 3-5 days after treatment start. All patients underwent the treatment proposed without complication. No allergic reaction and intolerance were noted, which make it possible to introduce anti-virus allokin-alpha drug into general clinical practice.

**Conclusions**

1. The course of allokin-alpha treatment in viral iridocyclitis patients resulted in normalization of immune state according to cellular and humoral immunity parameters. Thus, relative T-lymphocyte count increased from (38.2±0.5%) to (63.4±1.2%) and IRI increased from 1.16% to 2.00% as well as relative CD-19 lymphocyte count decreased from 24.4% to 21.8%. The NK number increased that enhances significantly body resistance to viral infection and improves immune biological resistance of the organism.
2. Introduction of allokin-alpha into anterior uveitis treatment enables to improve VA against the background of inflammatory process reduction.
3. Due to clinical and immune benefits, the absence of allergic and other side reactions as well as favorable tolerability, allokin-alpha can be introduced into clinical practice for inflammatory eye conditions.
References
1. Barinskii IF. [Herpesviral infections - immunodeficient
diseases of the XXI century. Current issues of herpesviral
2. Guliieva M. [Experimental and clinical studies of
Oftalmoferon eye drops in the herpetic keratitis
treatment]. Author’s thesis for Cand. Sc. (Med.). 14.00.08
3. Degtyarenko TV. [Adaptive significance of immune
Russian.
4. Drozdova EA, Tarasova LN, Teplova SN, Alekchina TV.
[Immunological features of uveitis in systemic diseases].
5. Zaimutdinova GK, Malkhanov VB, Shevchuk NE.
[Features of systemic and local cytokine production in
rheumatoid uveitis]. Tsitokiny i vospaleniie. 2008;7(2):52–
5. Russian.
6. Isakov VA. Герпесвирусные инфекции человека / В.А. Исаков, Е.И. Архипов, Д.В. Исаков // Руковод-
ство для врачей . — СПб.:СпецЛит., 2006. — 303 с.
7. Metelitsyna IP, Levitska GV, Ghaffari Sahbi ben Mohamed
Moncef. [The level of cytokines in intraocular fluids
in patients with rheumatogenous retinal detachment].
8. Sukhina LA, Lysenko AG, Yulish ME. [Optimizing the
diagnosis and treatment of chronic recurrent uveitis in
children caused by persistent intracellular infections].
Ruyaian.
9. Khokkanen VM, Solovieva MV, Bataiev VM, Ionova
OG. [Investigation of the role of cytokines in the course
of tuberculous uveitis]. Collection of papers of scientific
practical conference in ophthalmosurgery «East-West»,
10. Shaimova VA. [The role of inflammatory cytokines in
eye diseases]. (Literature review). Oftalmokhirurgiia i
11. Shishkin MK, Isakov VA, Lermolinko DK. Selected issues
of infectious patient therapy: Guidance for physicians.
SPb.: Foliant; 2005. 636-64. Russian.
et al. Identification of new pathogens in the intraocular
fluid of patients with uveitis. Am. J. Ophthalmol. 2010;150
(5):628-36.
13. Plskova J, Greiner K, Forrester JV. Interferon-α as an
effective treatment for noninfectious posterior uveitis and
ocular infiltrating T helper type 1 cells of patients with
non-infectious uveitis to produce chemokines. Br. J.